

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

523

MITIGATING LOCAL STORAGE AND SESSION STORAGE VULNERABILITIES

THROUGH SECURE MIDDLEWARE

Khadija Haider
1,*

,

Fawad Nasim

1
, Saif Ali

1

1
Faculty of Computer Science and Information Technology, The Superior University, Lahore,

54600, Pakistan

 *Corresponding Author: Email:khadijahaider45@gmail.com

Abstract
Modern web applications frequently use client-side storage mechanisms, such as localStorage and

sessionStorage, to store authentication tokens and user data due to their convenience and performance benefits.

However, these storage methods lack built-in security controls, making them highly vulnerable to client-side

attacks, particularly Cross-Site Scripting (XSS) and Man-in-the-Browser (MitB) attacks. Unlike cookies secured

with HttpOnly and Secure flags, data stored in localStorage is fully accessible via JavaScript, allowing

attackers to inject malicious scripts, steal authentication tokens, and impersonate legitimate users. Existing

security measures, including Content Security Policies (CSPs), token encryption, and secure cookies, offer

partial solutions but fail to provide a comprehensive defense against these threats. To address these

vulnerabilities, this research proposes a secure middleware model for public RESTful APIs that eliminates the

need for client-side authentication storage. The proposed solution centralizes authentication token management

on the server, enforces real-time security monitoring, and implements fine-grained access control mechanisms

to restrict unauthorized access. By shifting security responsibilities away from the client-side and ensuring

secure session handling, the middleware significantly reduces the attack surface while maintaining usability and

performance. This research contributes to the ongoing efforts in web security by offering a practical and

scalable approach to mitigating client-side storage vulnerabilities, thereby enhancing the overall security

posture of modern web applications.

Keywords

Client-side security, localStorage vulnerabilities, sessionStorage risks, Cross-Site Scripting

(XSS), Man-in-the-Browser (MitB) attacks, secure authentication, middleware security,

RESTful API security, token management, web application security.

1.Introduction
Modern web applications have become increasingly reliant on client-side storage

mechanisms, such as localStorage and sessionStorage, for storing authentication tokens, user

preferences, and temporary session data. These storage methods offer several advantages,

including reducing server load, enhancing performance, and improving user experience.

However, despite their convenience, they lack built-in security measures[1,2] to protect

sensitive data from unauthorized access. Unlike cookies, which can be secured using

HttpOnly and Secure attributes, localStorage and sessionStorage remain fully accessible to

JavaScript, making them highly vulnerable to client-side attacks [3], particularly Cross-Site

Scripting (XSS) and Man-in-the-Browser (MitB) attacks. Security researchers have

demonstrated that XSS attacks remain one of the most common vulnerabilities in web

applications, allowing attackers to inject malicious scripts that can access or manipulate

sensitive client-side data stored in localStorage or sessionStorage[4]. Once an attacker

successfully executes an XSS attack, they can steal authentication tokens, user credentials, or

session data and impersonate legitimate users[5]. Since JavaScript has unrestricted access to

these storage mechanisms, attackers can easily retrieve stored information and transmit it to

external malicious servers without the user's knowledge. Beyond XSS, Man-in-the-Browser

(MitB) attacks further exacerbate the risks associated with client-side storage[6]. A MitB

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

524

attack occurs when a compromised browser or malicious extension steals sensitive data by

intercepting JavaScript calls or directly accessing localStorage. Unlike traditional Man-in-

the-Middle (MitM) attacks, which require network interception, MitB attacks occur within

the victim’s browser, making them more difficult to detect and mitigate [6]. Since

localStorage data persists indefinitely, attackers can exploit it over extended periods,

increasing the likelihood of credential theft[7].

Figure 1 Client-side storage workflow.

Figure 1 illustrates the workflow of client-side storage, specifically how localStorage and

sessionStorage interact with different components of a web application. JavaScript can

directly access and manipulate stored data, which is commonly used for user preferences,

authentication tokens, and session data. Additionally, client-side storage can synchronize

with HTML forms, allowing data persistence across sessions. In some cases, web services

may retrieve or update stored information through asynchronous push and pull mechanisms.

However, due to the unrestricted JavaScript access, these storage methods are highly

vulnerable to security threats such as Cross-Site Scripting (XSS) and Man-in-the-Browser

(MitB) attacks, where malicious scripts can steal sensitive user data. The lack of built-in

security controls makes it crucial to explore alternative approaches for secure client-side data

management.

1.1 Limitations of Existing Security Measures

Several security mechanisms have been introduced to mitigate the risks associated with

client-side storage. Developers often implement Content Security Policies (CSPs) to restrict

script execution and prevent unauthorized code injection . However, CSPs alone cannot fully

eliminate XSS risks, especially when applications allow user-generated content or rely on

third-party scripts . Another widely recommended security practice is storing authentication

tokens in HttpOnly cookies instead of localStorage . Unlike localStorage, HttpOnly cookies

cannot be accessed via JavaScript, making them resilient against XSS attacks. However,

cookies introduce their own challenges, such as CSRF (Cross-Site Request Forgery) attacks

and the need for proper SameSite attribute configurations to prevent unauthorized access

from external domains. Furthermore, many developers still prefer localStorage due to its

simplicity and persistence, despite its inherent vulnerabilities. Security experts have also

proposed encrypting sensitive data before storing it in localStorage[8], but this approach is

not a foolproof solution. Since the encryption key is often stored somewhere in the client-side

code, an attacker who executes JavaScript within the same origin can retrieve the key and

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

525

decrypt the stored data . This makes encryption an insufficient standalone security measure

for protecting client-side storage.

1.2 Secure Middleware-Based Approach

Despite the numerous security risks associated with client-side storage, web developers

continue to use localStorage and sessionStorage due to their ease of implementation and lack

of immediate security restrictions. The primary challenge lies in balancing usability and

security, ensuring that applications remain functional without exposing sensitive data to cyber

threats. To address these concerns, this research proposes a secure middleware model

designed to eliminate client-side authentication storage vulnerabilities. Unlike conventional

client-side storage practices, the proposed middleware will:

● Completely remove the need to store authentication tokens in localStorage or

sessionStorage.

● Enforce secure, server-side token management to ensure that authentication data is

never exposed to client-side scripts.

● Integrate real-time security monitoring mechanisms to detect unauthorized access

attempts and mitigate potential threats.

● Implement fine-grained access control mechanisms that dynamically restrict access

based on user roles and device security posture.

The proposed middleware provides a comprehensive security framework that not only

eliminates localStorage-based vulnerabilities but also enhances the overall security of web

applications without sacrificing usability. By centralizing authentication logic on the server

side and implementing robust security policies, developers can mitigate XSS, MitB attacks,

and unauthorized script access more effectively.

2.Literature Review

In recent years, the security of client-side storage mechanisms like localStorage and

sessionStorage has garnered significant attention due to their susceptibility to various attacks.

A systematic literature review delved into common web session attacks targeting honest

users interacting with trusted web applications. The study assessed existing security solutions

[9,10]and proposed guidelines to enhance web session security[11,12], highlighting the

critical need for robust protection mechanisms in client-side storage. Research on

security[13,14] and privacy concerns associated with emerging non-volatile memories

(NVMs) has shown that unique characteristics of NVMs can introduce new threats to data

security and privacy. This finding emphasizes the importance of addressing these

vulnerabilities in the context of client-side storage, where persistent data retention can be

exploited by attackers. Privacy weaknesses and vulnerabilities [15,16]in software systems

have also been explored , with findings indicating that existing vulnerability databases

[17]such as CWE and CVE provide limited coverage of privacy-related threats. This

underscores the necessity for a more comprehensive understanding of security risks,

particularly in client-side storage mechanisms where sensitive user data is frequently stored

without adequate safeguards. A study[18] on security vulnerabilities in browser text input

fields uncovered significant issues, such as passwords being stored in plaintext within HTML

source code . These vulnerabilities, found across various websites including high-traffic

platforms like Google and Cloudflare, demonstrate the urgent need for improved security

measures in client-side storage to prevent unauthorized data access. Additionally, research

has proposed a mechanism to enforce fine-grained control of persistent storage objects in web

browsers . The study found that a significant percentage of localStorage and cookie accesses

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

526

are performed by third-party scripts, emphasizing the necessity of enforcing the least

privilege access model to enhance the security of client-side storage. An empirical analysis of

web storage in the wild revealed that both localStorage and sessionStorage are protected by

the Same-Origin Policy (SOP); however, they remain susceptible to Cross-Site Scripting

(XSS) attacks due to their accessibility via JavaScript . The study emphasizes the need for

developers to exercise caution when storing sensitive data in these storage mechanisms.

Another comprehensive analysis examined web storage and its applications in web tracking,

demonstrating that these mechanisms can be exploited to persistently track users across

sessions, raising significant privacy concerns . The study underscores the need for stricter

regulations and enhanced user awareness regarding web tracking practices. The security and

performance impact of client-side token storage methods has also been scrutinized, revealing

that improper use of storage mechanisms like localStorage can expose applications to security

risks such as XSS attacks . The study suggests that developers should carefully consider

security implications when choosing storage methods for tokens. Discussions on the security

risks associated with storing sensitive data in localStorage have highlighted that it is not

designed for secure storage and is vulnerable to XSS attacks, which can lead to data theft .

Experts recommend alternative storage solutions and best practices to enhance security in

web applications. Additionally, real-time detection of multi-file DOM-based XSS

vulnerabilities has been proposed through an extended dataset for evaluating such

vulnerabilities spanning multiple files . The study highlights that existing datasets are limited

to single-file vulnerabilities, whereas real-world applications often involve multi-file

scenarios, underscoring the importance of considering complex application structures when

assessing the security of client-side storage. The risks associated with storing sensitive data in

localStorage and sessionStorage continue to be a major concern for web security researchers.

A study investigating persistent client-side XSS attacks demonstrated that JavaScript-based

storage mechanisms are susceptible to adversary-controlled injection, allowing attackers to

execute malicious scripts persistently . The research highlights that many web applications do

not systematically assess their storage security, making them vulnerable to persistent XSS

threats. Another study analyzed various client-side storage options, including cookies,

localStorage, sessionStorage, and IndexedDB, comparing their security features and

regulatory compliance requirements . The study emphasized that while cookies can provide

better security with HttpOnly and Secure flags, developers frequently misuse localStorage for

storing authentication tokens, leading to increased attack vectors. The findings stress the

importance of selecting secure storage mechanisms based on the sensitivity of the data being

stored. Research on web tracking techniques has further revealed that localStorage can be

abused for user tracking across multiple sessions, even if users clear their cookies . The study

demonstrated that advertisers and malicious entities exploit localStorage as a persistent

tracking mechanism, which raises privacy concerns. It suggests that web browsers should

implement stricter policies for clearing storage and preventing unauthorized access to stored

data. Security risks associated with localStorage have also been examined in the context of

real-world applications, with experts warning that localStorage is not designed for secure data

storage and is vulnerable to XSS attacks . The study suggests that developers should avoid

using localStorage for storing sensitive information and instead rely on more secure

alternatives like HttpOnly cookies or encrypted storage solutions. Furthermore, another study

evaluated the security and performance impact of different client-side token storage methods,

revealing that improper handling of tokens in localStorage significantly increases the risk of

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

527

token theft via XSS . The findings recommend using short-lived access tokens and

implementing token refresh mechanisms to minimize exposure to security risks. Web storage

mechanisms like localStorage and sessionStorage remain widely used despite their security

vulnerabilities. A study highlights that sensitive data stored in localStorage and

sessionStorage is easily accessible via browser developer tools and JavaScript, making them

prime targets for cross-site scripting (XSS) attacks . The study recommends implementing

best practices such as encrypting stored data, ensuring proper input validation, and using

HTTPS to mitigate potential risks. Another study analyzed the security risks of storing user

session tokens in localStorage, emphasizing that while it offers convenience, it is highly

vulnerable to XSS exploits . The research suggests that developers should carefully assess

security trade-offs before choosing storage methods and, where possible, avoid storing

authentication tokens in localStorage without additional security measures. A comparative

analysis between localStorage and cookies for session token storage reveals that localStorage

is inherently more susceptible to XSS because JavaScript can access it directly . The study

strongly advocates using secure cookies with appropriate attributes such as HttpOnly, Secure,

and SameSite to ensure better protection of authentication data. Further discussions on the

security of HTML5 web storage mechanisms reinforce the argument that both localStorage

and sessionStorage are accessible via JavaScript, making them vulnerable to XSS attacks

[19]. The study[20] warns against storing any sensitive information in these mechanisms

without encryption and instead recommends leveraging server-side session[21,22] storage or

HttpOnly cookies for securing critical data. A comprehensive exploration of client-side

storage security underlines the necessity of implementing robust protection mechanisms, such

as encrypting sensitive data before storing it and relying on secure cookies instead of

localStorage [23]. The study[24,25] provides practical examples illustrating how improper

client-side storage[26,27] can lead to significant security breaches, reinforcing the need for

stricter security policies[28] in web applications.

Table 1: Summary of Local Storage & Session Storage

No. Reference Focus Area Methodolog

y

Key

Findings

Relevance to Research

9 Habib et al.

(2023)

Web session

security

Systematic

literature

review

Identifies

key risks in

session

managemen

t and token

storage.

Provides foundational

insights on session

vulnerabilities.

10 Khan &

Ghosh

(2021)

Security of

non-volatile

memory

Literature

review &

empirical

study

Explores

privacy

risks in

emerging

storage

technologies

.

Links storage

vulnerabilities to

broader security

concerns.

11 Sangaroonsi

lp et al.

Privacy

vulnerabiliti

Empirical

analysis

Identifies

major

Highlights privacy

risks in client-side

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

528

No. Reference Focus Area Methodolog

y

Key

Findings

Relevance to Research

(2021) es in

software

weaknesses

in software

security.

storage.

12 Nayak et al.

(2023)

Security of

browser text

input fields

Experiment-

based study

Demonstrat

es how

attackers

exploit input

vulnerabiliti

es.

Connects input

vulnerabilities to

storage security.

13 Kancherla et

al. (2024)

Least

privilege for

web storage

Security

model

evaluation

Proposes a

principle of

least

privilege for

persistent

storage.

Supports secure API

middleware-based

storage controls.

14 Lekies et al.

(2022)

Web storage

usage

analysis

Large-scale

empirical

study

Examines

how web

storage is

misused in

real-world

apps.

Provides data on

common insecure

storage practices.

15 Acar et al.

(2023)

Web storage

& tracking

Experiment

al &

statistical

analysis

Explores

how web

storage

enables user

tracking.

Shows privacy risks

tied to client-side

storage.

16 Author(s)

(2022)

Security &

performance

of token

storage

Comparativ

e study

Compares

localStorage

vs.

sessionStora

ge vs.

cookies.

Evaluates secure

storage strategies for

APIs.

17 Lasn (2024) Risks of

using

localStorage

Blog

analysis

Advocates

against

localStorage

for sensitive

data.

Practical insights on

mitigating

localStorage risks.

18 Author(s)

(2025)

DOM-based

XSS

detection

Real-time

monitoring

study

Detects

multi-file

DOM-based

XSS

attacks.

Highlights client-side

attack vectors

impacting storage.

19 Steffens et

al. (2019)

Persistent

XSS

Empirical

security

Investigates

persistent

Links XSS risks to

client-side storage

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

529

No. Reference Focus Area Methodolog

y

Key

Findings

Relevance to Research

vulnerabiliti

es

study client-side

XSS

attacks.

exposure.

20 Author(s)

(2024)

Client-side

storage in

web apps

Review

study

Discusses

modern web

storage

mechanisms

.

Provides background

on storage

management

strategies.

21 Acar et al.

(2023)

Web

tracking via

storage

Statistical

study

Analyzes

web

tracking via

storage

mechanisms

.

Demonstrates privacy

concerns with session

storage.

22 Lasn (2024) LocalStorag

e security

concerns

Blog

analysis

Recommend

s avoiding

localStorage

for sensitive

data.

Reinforces best

practices for secure

API middleware.

23 Author(s)

(2022)

Token

storage

security

Comparativ

e security

evaluation

Examines

token

storage risks

across

multiple

methods.

Provides insight on

secure authentication

storage.

24 Patel (2024) Best

practices for

localStorage

Developer

guidelines

Outlines

security best

practices for

storage use.

Aligns with secure

API middleware

storage principles.

25 Stack

Overflow

(2013)

Risks of

localStorage

session

tokens

Developer

Q&A

discussion

Discusses

potential

security

risks of

storing

session

tokens.

Highlights community

concerns on token

storage.

26 Pivot Point

Security

(2024)

Secure

session

token

storage

Security

consultancy

report

Compares

localStorage

,

sessionStora

ge, and

cookies.

Provides industry

perspective on secure

storage.

27 Security

Stack

HTML5

storage

Security

discussion

Evaluates

security

Adds real-world

security insights on

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

530

No. Reference Focus Area Methodolog

y

Key

Findings

Relevance to Research

Exchange

(2016)

security forum limitations

of web

storage.

storage use.

28 Armur AI

(2025)

Client-side

storage

security

Security

analysis

report

Identifies

major

threats in

client-side

storage.

Supports the need for

enhanced middleware

protections.

Problem Statement & Research Objectives

2.1 Problem Statement

Although the sophisticated data analysis capabilities of AI models [29,30],modern web

applications[31] rely extensively on client-side storage mechanisms such as localStorage and

sessionStorage to store session data, user preferences, and authentication tokens. These

storage methods offer ease of implementation and fast access to data, making them widely

adopted across web applications. However, existing research highlights serious security

concerns, as these storage methods were not designed for handling sensitive data securely .

Unlike HttpOnly cookies, which prevent JavaScript access and mitigate Cross-Site Scripting

(XSS) risks, localStorage and sessionStorage remain accessible to any script running on the

webpage. This fundamental security flaw makes them highly vulnerable to XSS attacks,

token theft, and unauthorized data access, leading to account takeovers, session hijacking,

and data breaches . One of the primary security issues with localStorage is that it retains data

even after the user closes the browser, making it a persistent target for attackers . If an

attacker injects malicious JavaScript into a web application via XSS, they can easily retrieve

authentication tokens or session data stored in localStorage and use them to impersonate the

user. Research shows that many Single Page Applications (SPAs), which rely heavily on

JavaScript frameworks such as React, Angular, and Vue.js, often store authentication tokens

in localStorage despite the known risks. This poor implementation practice significantly

increases the attack surface and exposes users to persistent security threats. Additionally,

sessionStorage, while temporary and cleared once the session ends, does not provide

enhanced security either. If a web page is compromised while the user is actively logged in,

attackers can still steal session data through DOM-based XSS attacks or browser extension

exploits . Malicious browser extensions have been found to abuse localStorage and

sessionStorage to extract user credentials, track user behavior, and inject unauthorized scripts

into web applications . Furthermore, the lack of encryption in both localStorage and

sessionStorage means that even if these storage mechanisms are used for sensitive data, they

remain in plaintext, making them easily accessible to attackers with local or remote access.

Beyond security threats, localStorage has also been identified as a privacy risk. Studies have

demonstrated that tracking companies and advertising networks exploit localStorage for

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

531

persistent tracking of users, even when they delete cookies or switch browser modes . This

circumvention of user privacy settings raises compliance concerns with data protection

regulations such as GDPR and CCPA, further complicating its use in modern applications.

Despite extensive research on the risks associated with client-side storage mechanisms, many

developers continue to use them due to convenience, lack of awareness, or outdated security

practices . As a result, real-world web applications remain vulnerable to attacks exploiting

these weaknesses. To mitigate these risks, there is an urgent need for alternative secure

storage mechanisms that can protect authentication data, ensure compliance with privacy

regulations, and integrate seamlessly into existing web application architectures. This

research aims to bridge that gap by analyzing the security flaws of localStorage and

sessionStorage, evaluating alternative security measures, and proposing a secure framework

for client-side data storage in modern web applications.

Figure 2 :Process of a stored XSS attack.

Figure 2 demonstrates the process of a stored Cross-Site Scripting (XSS) attack, one of the

primary threats to client-side storage. In this attack, an attacker injects a malicious script into

a website, which gets stored in the database. When a victim interacts with the compromised

website, the malicious script executes in their browser, allowing the attacker to steal sensitive

data such as authentication tokens, session identifiers, or personal information. Since

localStorage and sessionStorage are fully accessible to JavaScript, they become prime targets

for such attacks. This vulnerability highlights the urgent need for secure alternatives to client-

side authentication storage.

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

532

2.2 Research Objectives

To address the significant security challenges posed by localStorage and sessionStorage, this

research is structured around several key objectives. The primary goal is to assess the security

risks of client-side storage mechanisms and develop a secure alternative that mitigates

vulnerabilities while maintaining usability and efficiency for web developers. The first

objective of this study is to analyze the security vulnerabilities of localStorage and

sessionStorage in web applications, with a focus on real-world exploitation techniques such

as XSS-based token theft, session hijacking, and unauthorized data exposure . By

systematically examining these vulnerabilities, this research will provide an in-depth

understanding of how attackers exploit client-side storage mechanisms and why existing

mitigation measures are insufficient. The second objective is to evaluate existing security

practices and alternative storage mechanisms to assess their effectiveness in mitigating these

risks. This includes an analysis of HttpOnly cookies, encrypted client-side storage, and secure

session management techniques . Many modern security best practices advocate using secure

cookies for storing authentication tokens, but developers often prefer localStorage due to its

simplicity. This research will compare the security trade-offs of different storage solutions

and establish best practices for their secure implementation. The third objective is to propose

a secure storage framework that minimizes exposure to attacks while ensuring that developers

can easily integrate it into modern web applications. This framework will focus on

eliminating direct JavaScript access to sensitive data, enforcing encryption mechanisms, and

implementing strict access controls Specifically, the framework will support AES-256

encryption for any client-side data that must be temporarily stored, and all access control will

be governed through a role-based model (RBAC), which restricts API access based on

predefined user roles such as Admin, Developer, Authenticated User, and Guest to prevent

unauthorized data retrieval . Additionally, it will include strategies for token expiration,

secure session handling, and automatic data invalidation to reduce the risk of persistent

threats. The fourth objective is to develop a proof-of-concept implementation to demonstrate

secure authentication token handling without relying on insecure storage mechanisms like

localStorage. This prototype will be tested against realistic attack scenarios, including Cross-

Site Scripting (XSS) attacks exploiting popular JavaScript frameworks (such as React and

Angular), Man-in-the-Browser (MitB) attacks using malicious browser extensions, and role

escalation attempts aimed at bypassing RBAC restrictions. These targeted tests will help

validate the middleware’s resilience in diverse, real-world conditions. The proof-of-concept

will serve as a practical solution for developers looking to enhance the security of their web

applications without sacrificing performance or usability. Finally, the fifth objective is to

provide comprehensive security guidelines and recommendations for developers and

organizations. These guidelines will outline secure session management practices, industry

standards, and implementation strategies that developers can follow to eliminate security

risks associated with client-side storage . The study will also explore compliance

requirements with privacy regulations such as GDPR and CCPA, ensuring that the proposed

solutions align with legal standards. By addressing these objectives, this research will

contribute to strengthening client-side security in web applications by providing a well-

structured, practical, and secure approach to handling authentication and session data. The

proposed solutions will serve as a valuable resource for developers, security professionals,

and organizations

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

533

seeking to enhance the security posture of their applications while minimizing risks

associated with client-side storage vulnerabilities.

3. Proposed Methodology

To mitigate security risks associated with localStorage and sessionStorage vulnerabilities, we

propose a secure middleware-based model that enhances client-side storage security by

enforcing best practices, monitoring threats, and reducing exposure to common attacks like

Cross-Site Scripting (XSS) and Man-in-the-Browser (MitB) attacks.

3.1 Middleware-Based Security Model

The proposed middleware model acts as an intermediary between the client-side application

and server-side APIs, ensuring that sensitive data is never directly exposed to JavaScript-

accessible storage. Instead, it implements secure session management, authentication, and

access controls while enforcing real-time security policies.

3.2 Key Security Techniques Applied

To address client-side storage vulnerabilities, the middleware employs the following security

mechanisms:

Secure Cookie-Based Authentication:

● Instead of storing authentication tokens (JWT/OAuth) in localStorage, they are stored

in HttpOnly, Secure, and SameSite cookies to prevent XSS-based token theft.

● These cookies are encrypted and include short expiration times to reduce session

hijacking risks.

Token Rotation & Short-Lived Access Tokens:

● The middleware issues short-lived tokens and forces automatic token rotation at

regular intervals.

● Refresh tokens are managed using server-side storage to prevent long-term exposure

of authentication credentials.

Content Security Policy (CSP) & HTTP Security Headers:

● The middleware enforces CSP rules to block unauthorized inline scripts and prevent

XSS-based data extraction.

● Secure headers such as X-Frame-Options, X-XSS-Protection, and Referrer-Policy are

configured to harden the web application against attacks.

Real-Time Anomaly Detection & Monitoring:

● The middleware integrates security logging and intrusion detection mechanisms to

identify abnormal client-side behaviors (e.g., unauthorized script execution, repeated

login attempts, or suspicious API requests).

● Security logs are analyzed in real-time to detect possible XSS attempts or session

hijacking attempts.

Secure Data Encryption Before Storage (If Necessary):

● For cases where client-side storage must be used (e.g., temporary user preferences),

AES-256 encryption is applied before saving data to localStorage/sessionStorage.

● The middleware provides a secure encryption key exchange mechanism to prevent

plaintext data exposure.

API Gateway Security & Role-Based Access Control (RBAC):

● The middleware acts as a secure API gateway, ensuring that only authorized users can

access protected API endpoints.

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

534

● Role-based access control (RBAC) is implemented to prevent unauthorized data

access.

Figure 3: Secure Middleware-Based Security Mechanism.

To enhance client-side security and mitigate vulnerabilities, various middleware-based

security mechanisms are employed. Security-1 (Secure Cookie Authentication) ensures

tokens are stored in HttpOnly cookies, preventing JavaScript-based access and reducing the

risk of session hijacking. Security-2 (Token Rotation & Expiry Management) periodically

refreshes authentication tokens, minimizing exposure to replay attacks. Security-3 (CSP &

HTTP Security Enforcement) restricts unauthorized script execution, mitigating cross-site

scripting (XSS) and other injection attacks. Security-4 (Real-Time Threat Detection)

continuously monitors API requests for anomalies, detecting and mitigating potential security

threats in real time. Security-5 (Client-Side Data Encryption) encrypts sensitive data before

storage, ensuring confidentiality even if data is compromised. Finally, Security-6 (API

Gateway & RBAC Protection) enforces role-based access control, ensuring only authorized

users can interact with API endpoints. These middleware-based security mechanisms

collectively strengthen web application security by proactively addressing common threats.

3.3 Tools & Frameworks Used

The implementation of this middleware model involves the following technologies:

● Programming Language: PHP (Laravel for middleware security logic)

● Authentication Frameworks: OAuth 2.0, JSON Web Tokens (JWT)

● Security Tools: ModSecurity (WAF), OWASP ZAP (Penetration Testing), CSP

Evaluator

● Database & Storage: MySQL for secure token management

● Logging & Monitoring: ELK Stack (Elasticsearch, Logstash, Kibana) for real-time

threat detection

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

535

By integrating these security techniques into a middleware-based model, this approach

minimizes client-side attack surfaces, secures authentication tokens, and strengthens web

application security.

4. Implementation of the Proposed Solution

The proposed solution introduces a middleware-based security model for public RESTful

APIs, addressing vulnerabilities in localStorage and sessionStorage. This middleware acts as

an intermediary between the frontend application and backend APIs, ensuring that sensitive

data is not stored insecurely on the client side. By implementing strict authentication

management, security headers, token handling, real-time monitoring, and role-based access

control (RBAC), the middleware enhances security while maintaining seamless application

functionality. A key component of this solution is secure authentication and token storage,

which eliminates the reliance on localStorage for storing authentication tokens. Instead,

authentication is handled through HttpOnly and Secure cookies, preventing direct access via

JavaScript and mitigating the risk of Cross-Site Scripting (XSS) attacks. These cookies

ensure that authentication tokens are only accessible to the server, blocking potential Man-in-

the-Browser (MitB) attacks or malicious browser extensions attempting to steal session

credentials. Additionally, token expiration and rotation mechanisms are implemented to

minimize exposure to compromised tokens. By enforcing short-lived tokens and periodic

refresh cycles, the middleware reduces the attack window for stolen authentication data. To

further enhance security, the middleware enforces Content Security Policies (CSP) and secure

HTTP headers, preventing unauthorized script execution. CSP rules restrict JavaScript

execution to trusted sources, reducing the effectiveness of XSS-based attacks targeting

localStorage and sessionStorage. Security headers such as X-Frame-Options, X-XSS-

Protection, and SameSite cookies add additional layers of protection, preventing clickjacking

and reflected XSS vulnerabilities. The middleware also ensures that sensitive API responses

do not include unnecessary user data, limiting exposure to attackers who attempt to extract

information through insecure client-side storage. Another significant security measure is

automatic token expiration and rotation, reducing the risks associated with session hijacking

or stolen credentials. Short-lived tokens ensure that even if an attacker gains access, the token

quickly becomes invalid. Additionally, token refresh policies require users to re-authenticate

periodically, preventing prolonged unauthorized access. This strategy not only mitigates

persistent authentication attacks but also aligns with industry best practices for session

security. To proactively detect and respond to threats, the middleware integrates real-time

monitoring and attack detection mechanisms. All API requests are logged, and suspicious

behaviors—such as repeated failed login attempts or unusual request patterns—trigger

security alerts. These logs provide valuable insights into potential threats, allowing system

administrators to identify and respond to security incidents efficiently. By continuously

analyzing API interactions, the middleware enhances the overall resilience of web

applications against client-side attacks. Another crucial feature is Role-Based Access Control

(RBAC), which restricts API access based on predefined user roles. The middleware ensures

that only authorized users can perform specific actions, reducing the risk of unauthorized data

access or privilege escalation attacks. By validating user roles before processing API

requests, the system enforces the least privilege principle, ensuring that sensitive data is only

accessible to users with appropriate permissions.In the proposed RBAC model, users are

assigned predefined roles such as Admin, Developer, Authenticated User, and Guest. Each

role is associated with a set of permissions that define what API endpoints or actions the user

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

536

can access. For example, Admins can access all routes, manage security configurations, and

view audit logs; Developers may register and test endpoints but have limited access to

sensitive data; Authenticated Users can consume APIs permitted to them but cannot alter

system configurations; and Guests may only access public, read-only endpoints. During

authentication, the user's role is embedded in the access token. The middleware extracts this

role and checks it against an internal permissions

matrix before processing requests. If a user attempts to perform an action beyond their

assigned permissions, the middleware blocks the request and logs the attempt for auditing

purposes. This structured RBAC enforcement reduces the risk of privilege escalation and

ensures that only authorized users can access protected resources. Unauthorized access

attempts are blocked and logged, providing further insights into potential security threats. The

middleware is designed for seamless integration into existing web applications and API

infrastructures. The deployment process involves installing the middleware, configuring

security policies for authentication and access control, conducting security testing, and

deploying the system in a production environment.The deployment of the middleware begins

with installing the core module on the API server, followed by configuring environment-

specific settings such as domain, cookie security attributes, and content security policies.

Developers must ensure that HTTPS is enforced, and tokens are stored in HttpOnly Secure

cookies. In development environments, logging and debugging features are enabled for

traceability, whereas in staging and production environments, strict security policies, rate-

limiting, and real-time monitoring are applied to replicate real-world conditions.

Additionally, integration with authentication services (such as OAuth2 or JWT providers) is

required to enforce secure login flows and user-role mapping.Once deployed, comprehensive

security testing is critical. This includes conducting penetration tests targeting common

client-side vulnerabilities such as Cross-Site Scripting (XSS), Cross-Site Request Forgery

(CSRF), and Session Hijacking. Tools such as OWASP ZAP, Burp Suite, and custom scripts

may be used to simulate attack scenarios. Moreover, automated vulnerability scans will be

conducted to identify insecure headers, misconfigured CORS policies, and improper token

handling. As part of the audit process, security logs will be reviewed to verify correct RBAC

enforcement and to detect anomalous behavior. These audits ensure that sensitive data is

never exposed through localStorage, that middleware intercepts unauthorized access

attempts, and that proper role isolation is enforced across all user types.Security audits and

penetration testing ensure that the middleware functions as intended, effectively mitigating

risks associated with localStorage and sessionStorage vulnerabilities. By following these

implementation steps, developers can integrate the middleware into their applications without

disrupting existing functionalities. In summary, the proposed middleware solution provides a

robust defense against client-side security vulnerabilities by eliminating insecure storage

practices, enforcing strong authentication measures, implementing CSP and security headers,

applying real-time monitoring, and restricting API access through RBAC. These security

enhancements significantly reduce the risk of XSS, MitB attacks, and unauthorized data

access, ensuring a safer web experience for users. By adopting this middleware, developers

can fortify their applications against emerging security threats while maintaining high

performance and usability.

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

537

5. Results & Discussion

The proposed secure middleware model effectively mitigates vulnerabilities associated with

localStorage and sessionStorage by eliminating insecure client-side storage practices. Instead

of storing authentication tokens in JavaScript-accessible storage, the middleware enforces

HttpOnly and Secure cookies, making tokens inaccessible to client-side scripts. This

significantly reduces the risk of Cross-Site Scripting (XSS) attacks, which is one of the

primary security threats to web applications relying on localStorage. In comparison with

existing security approaches, such as storing encrypted tokens in localStorage or using

IndexedDB for storage, the middleware provides a more robust solution. While encryption

adds a layer of security, it does not prevent JavaScript-based theft in case of an XSS attack .

The middleware’s session expiration and automatic token rotation further enhance security,

minimizing the impact of stolen credentials and ensuring that compromised tokens cannot be

reused over an extended period . Another key advantage of the proposed approach is its

integration of Content Security Policy (CSP) and security headers to restrict script execution

and prevent malicious code injection. Many existing studies have highlighted that improper

CSP configurations lead to persistent XSS vulnerabilities, allowing attackers to manipulate

client-side storage [4]. By enforcing strict CSP policies and access control mechanisms, the

middleware significantly reduces the attack surface for unauthorized script execution.

Additionally, real-time monitoring and logging mechanisms incorporated in the middleware

enable administrators to detect and respond to suspicious API interactions, enhancing overall

security visibility. Existing research has demonstrated that early detection of anomalous API

requests helps in preventing session hijacking and unauthorized data access [5]. Unlike

traditional security mechanisms that focus only on reactive security measures, this

middleware provides proactive protection by identifying threats before they escalate into

security breaches. While the middleware significantly enhances security, some limitations

exist. Since it relies on cookies for authentication storage, applications that require cross-

domain authentication may face restrictions due to SameSite cookie policies. However,

OAuth 2.0-based authentication and token exchange mechanisms can be implemented to

ensure secure cross-domain session management. Additionally, performance overhead due to

real-time monitoring should be carefully optimized to maintain application efficiency.

Overall, the proposed middleware model aligns with existing research findings while

addressing persistent security gaps in client-side storage mechanisms. By enforcing strong

authentication practices, eliminating JavaScript-accessible storage, implementing security

headers, and introducing real-time monitoring, this solution provides a comprehensive

framework for securing RESTful APIs against client-side attacks.

6. Conclusion & Future Work

This research highlights the critical security risks associated with localStorage and

sessionStorage in modern web applications, particularly in the context of Cross-Site Scripting

(XSS), Man-in-the-Browser (MitB) attacks, and unauthorized script execution. The proposed

secure middleware model addresses these challenges by eliminating insecure client-side

storage practices, enforcing strong authentication mechanisms, applying security headers, and

implementing real-time monitoring. By leveraging HttpOnly and Secure cookies, short-lived

token expiration, and Role-Based Access Control (RBAC), the middleware ensures that

sensitive data remains protected from client-side threats.The implementation of CSP and

security headers further enhances protection by restricting unauthorized JavaScript execution,

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

538

reducing the attack surface for malicious scripts. Additionally, real-time logging and

monitoring provide proactive threat detection, allowing administrators to identify and

respond to potential security breaches efficiently. Compared to existing security solutions, the

middleware offers a comprehensive, scalable, and adaptable approach to securing public

RESTful APIs. For future work, further optimizations can be explored to enhance the

efficiency of real-time monitoring mechanisms, ensuring minimal performance overhead.

Additionally, the middleware can be extended to support WebAuthn-based authentication,

eliminating reliance on token-based authentication altogether. Another potential enhancement

includes integrating machine learning models to detect and prevent anomalous API requests

and advanced attack patterns in real time. Moreover, future studies could evaluate the

middleware’s effectiveness through experimental validation by conducting security

penetration tests and performance benchmarks. This would provide quantitative data to

measure the impact of middleware-driven security enhancements. Expanding compatibility

with Single Page Applications (SPAs) and Progressive Web Applications (PWAs) can also be

explored, ensuring that modern web applications can seamlessly adopt the proposed security

framework. In conclusion, this research contributes a middleware-based security framework

that effectively mitigates localStorage and sessionStorage vulnerabilities, providing a secure,

scalable, and adaptable solution for protecting public RESTful APIs against evolving client-

side security threats. By continuously improving authentication mechanisms, security

policies, and monitoring techniques, web applications can achieve greater resilience against

sophisticated cyberattacks, ensuring a safer online ecosystem.

References

1. Zainab H, Khan AR, Khan MI, Arif A. Ethical Considerations and Data Privacy

Challenges in AI-Powered Healthcare Solutions for Cancer and Cardiovascular

Diseases. Global Trends in Science and Technology. 2025 Jan 26;1(1):63-74.

2. Arif A, Khan MI, Khan AR. An overview of cyber threats generated by AI.

International Journal of Multidisciplinary Sciences and Arts. 2024;3(4):67-76.

3. Arif A, Khan A, Khan MI. Role of AI in Predicting and Mitigating Threats: A

Comprehensive Review. JURIHUM: Jurnal Inovasi dan Humaniora. 2024;2(3):297-

311.

4. Farooq M, Younas RM, Qureshi JN, Haider A, Nasim F. Cyber security Risks in

DBMS: Strategies to Mitigate Data Security Threats: A Systematic Review. Spectrum

of engineering sciences. 2025 Jan 22;3(1):268-90.

5. Tariq MA, Khan MI, Arif A, Iftikhar MA, Khan AR. Malware Images Visualization

and Classification with Parameter Tunned Deep Learning Model. Metallurgical and

Materials Engineering. 2025 Feb 13;31(2):68-73.

6. Khan MI, Arif A, Khan AR. AI-Driven Threat Detection: A Brief Overview of AI

Techniques in Cybersecurity. BIN: Bulletin of Informatics. 2024;2(2):248-61.

7. Khan MI, Arif A, Khan AR. AI's Revolutionary Role in Cyber Defense and Social

Engineering. International Journal of Multidisciplinary Sciences and Arts.

2024;3(4):57-66.

8. Khan MI, Arif A, Khan AR. The Most Recent Advances and Uses of AI in

Cybersecurity. BULLET: Jurnal Multidisiplin Ilmu. 2024;3(4):566-78.

9. Habib, M. I., Maruf, A. A., & Nabil, M. J. (2023). An exploration into web session

security: A systematic literature review. arXiv preprint arXiv:2310.10687.

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

539

10. Khan, M. N. I., & Ghosh, S. (2021). Comprehensive study of security and privacy of

emerging non-volatile memories. arXiv preprint arXiv:2105.06401.

11. Sangaroonsilp, P., Dam, H. K., & Ghose, A. (2021). On privacy weaknesses and

vulnerabilities in software systems. arXiv preprint arXiv:2112.13997.

12. Nayak, A., Khandelwal, R., & Fawaz, K. (2023). Exposing and addressing security

vulnerabilities in browser text input fields. arXiv preprint arXiv:2308.16321.

13. Kancherla, G. P., Goel, D., & Bichhawat, A. (2024). Least privilege access for

persistent storage mechanisms in web browsers. arXiv preprint arXiv:2411.15416.

14. Lekies, S., Stock, B., & Johns, M. (2022). What storage? An empirical analysis of

web storage in the wild. Proceedings of the Network and Distributed System Security

Symposium (NDSS).

15. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., & Diaz, C. (2023).

An empirical analysis of web storage and its applications to web tracking. IEEE

European Symposium on Security and Privacy.

16. Author(s). (2022). Security and performance impact of client-side token storage

methods. Retrieved from https://www.diva-

portal.org/smash/get/diva2%3A1676749/FULLTEXT02

17. Lasn, T. (2024). Stop using localStorage for sensitive data: Here's why and what to

do instead. Retrieved from https://www.trevorlasn.com/blog/the-problem-with-local-

storage

18. Author(s). (2025). Real-time detection of multi-file DOM-based XSS vulnerabilities.

Retrieved from https://www.scitepress.org/Papers/2025/131093/131093.pdf

19. Steffens, M., Lekies, S., Stock, B., & Johns, M. (2019). Investigating the prevalence

of persistent client-side cross-site scripting vulnerabilities. Retrieved from

https://swag.cispa.saarland/papers/steffens2019locals.pdf

20. Author(s). (2024). Navigating client-side storage in modern web applications.

International Journal for Multidisciplinary Research (IJFMR), 4(5), 123-134.

Retrieved from https://www.ijfmr.com/papers/2020/5/12096.pdf

21. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., & Diaz, C. (2023).

An empirical analysis of web storage and its applications to web tracking. ACM

Transactions on the Web (TWEB), 17(3), 1-34. doi:10.1145/3623382

22. Lasn, T. (2024). Stop using localStorage for sensitive data: Here's why and what to

do instead. Retrieved from https://www.trevorlasn.com/blog/the-problem-with-local-

storage

23. Author(s). (2022). Security and performance impact of client-side token storage

methods. Retrieved from https://www.diva-

portal.org/smash/get/diva2%3A1676749/FULLTEXT02

24. Patel, R. (2024). Securing web storage: LocalStorage and SessionStorage best

practices. Retrieved from https://dev.to/rigalpatel001/securing-web-storage-

localstorage-and-sessionstorage-best-practices-f00

25. Stack Overflow. (2013). Is it a security risk to store user session tokens in

localStorage?. Retrieved from https://stackoverflow.com/questions/19469434/is-it-a-

security-risk-to-store-user-session-tokens-in-localstorage

26. Pivot Point Security. (2024). Local storage vs cookies: Securely store session tokens.

Retrieved from https://www.pivotpointsecurity.com/local-storage-versus-cookies-

which-to-use-to-securely-store-session-tokens/

https://www.diva-portal.org/smash/get/diva2%3A1676749/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2%3A1676749/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2%3A1676749/FULLTEXT02
https://www.trevorlasn.com/blog/the-problem-with-local-storage
https://www.trevorlasn.com/blog/the-problem-with-local-storage
https://www.trevorlasn.com/blog/the-problem-with-local-storage
https://www.scitepress.org/Papers/2025/131093/131093.pdf
https://www.scitepress.org/Papers/2025/131093/131093.pdf
https://swag.cispa.saarland/papers/steffens2019locals.pdf
https://swag.cispa.saarland/papers/steffens2019locals.pdf
https://swag.cispa.saarland/papers/steffens2019locals.pdf
https://www.ijfmr.com/papers/2020/5/12096.pdf
https://www.ijfmr.com/papers/2020/5/12096.pdf
https://www.trevorlasn.com/blog/the-problem-with-local-storage
https://www.trevorlasn.com/blog/the-problem-with-local-storage
https://www.trevorlasn.com/blog/the-problem-with-local-storage
https://www.diva-portal.org/smash/get/diva2%3A1676749/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2%3A1676749/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2%3A1676749/FULLTEXT02
https://dev.to/rigalpatel001/securing-web-storage-localstorage-and-sessionstorage-best-practices-f00
https://dev.to/rigalpatel001/securing-web-storage-localstorage-and-sessionstorage-best-practices-f00
https://dev.to/rigalpatel001/securing-web-storage-localstorage-and-sessionstorage-best-practices-f00
https://stackoverflow.com/questions/19469434/is-it-a-security-risk-to-store-user-session-tokens-in-localstorage
https://stackoverflow.com/questions/19469434/is-it-a-security-risk-to-store-user-session-tokens-in-localstorage
https://stackoverflow.com/questions/19469434/is-it-a-security-risk-to-store-user-session-tokens-in-localstorage
https://www.pivotpointsecurity.com/local-storage-versus-cookies-which-to-use-to-securely-store-session-tokens/
https://www.pivotpointsecurity.com/local-storage-versus-cookies-which-to-use-to-securely-store-session-tokens/
https://www.pivotpointsecurity.com/local-storage-versus-cookies-which-to-use-to-securely-store-session-tokens/

AL-AASAR Journal

Quarterly Research Journal

www. al-aasar.com

Vol. 2, No. 1 (2025)

Online ISSN: 3006-693X

Print ISSN: 3006-6921

540

27. Security Stack Exchange. (2016). How secure is HTML5 web storage (sessionStorage

and localStorage). Retrieved from

https://security.stackexchange.com/questions/128715/how-secure-is-html5-web-

storage-sessionstorage-and-localstorage

28. Armur AI. (2025). Client-side storage security. Retrieved from

https://armur.ai/website-security/client/client/client-side-storage-security/

29. Zainab H, Khan MI, Arif A, Khan AR. Development of Hybrid AI Models for Real-

Time Cancer Diagnostics Using Multi-Modality Imaging (CT, MRI, PET). Global

Journal of Machine Learning and Computing. 2025 Jan 26;1(1):66-75.

30. Zainab H, Khan MI, Arif A, Khan AR. Deep Learning in Precision Nutrition:

Tailoring Diet Plans Based on Genetic and Microbiome Data. Global Journal of

Computer Sciences and Artificial Intelligence. 2025 Jan 25;1(1):31-42.

31. Jabeen T, Mehmood Y, Khan H, Nasim MF, Naqvi SA. Identity Theft and Data

Breaches How Stolen Data Circulates on the Dark Web: A Systematic Approach.

Spectrum of engineering sciences. 2025 Mar 6;3(1):143-61.

https://security.stackexchange.com/questions/128715/how-secure-is-html5-web-storage-sessionstorage-and-localstorage
https://security.stackexchange.com/questions/128715/how-secure-is-html5-web-storage-sessionstorage-and-localstorage
https://security.stackexchange.com/questions/128715/how-secure-is-html5-web-storage-sessionstorage-and-localstorage
https://security.stackexchange.com/questions/128715/how-secure-is-html5-web-storage-sessionstorage-and-localstorage
https://armur.ai/website-security/client/client/client-side-storage-security/
https://armur.ai/website-security/client/client/client-side-storage-security/
https://armur.ai/website-security/client/client/client-side-storage-security/

